Current Trends

The Effects of Smoking on Health

A World Health Organization (WHO) Expert Committee recently reaffirmed a statement released in 1970 concerning the effects of smoking cigarettes on health. It states that "smoking-related diseases are such important causes of disability and premature death in developed countries that the control of cigarette smoking could do more to improve health and prolong life in these countries than any single action in the whole field of preventive medicine" (1). The specific effects of smoking, as outlined by the WHO Committee, are summarized below.
Lung Cancer: The increase in lung cancer mortality in those countries where cigarette smoking has been widespread continues without interruption. In some countries, such as the United Kingdom and the United States, there is a levelingoff of mortality rates among men under 60 years of age, for whom cigarette consumption reached a plateau 20 years ago. In women, whose cigarette consumption has been rising rapidly in the past 30 years, lung cancer mortality continues to rise at an increasing rate. Mortality rates from lung cancer are 10 times greater in smokers than in persons who have never smoked. Cessation of smoking reduces this differential gradually so that after 10 years the mortality rate for these ex-smokers approaches that for persons who never smoked. This indicates that widespread cessation of smoking would rapidly reduce lung cancer mortality.

In the United States smoking was considered to be responsible for 68,000 of the estimated 84,000 lung cancer deaths in 1976. Lung cancer risks increase directly with the number of cigarettes smoked every day, total lifetime number of cigarettes smoked, and depth of inhalation. Lung cancer is also inversely related to age: the younger one starts smoking, the greater the risk of disease. The use of filter tips and low-tar content cigarettes has been shown to reduce slightly the risk of developing lung cancer; the risk is higher than that in nonsmokers, however.

Smokers with occupational exposures to asbestos and uranium have an increased risk of dying from lung cancer. Asbestos workers who smoke have 90 times the risk of developing lung cancer than nonsmoking, nonexposed persons. The risk of lung cancer among uranium miners who smoke is 4 times greater than for smokers who are not miners. The uranium and asbestos industries have only slightly increased lung cancer rates in nonsmokers.
Bronchitis and Emphysema: Extensive studies in a number of nations confirm that pulmonary function of cigarette smokers is impaired in every known respect when
compared to nonsmokers. The prevalence of cough and expectoration in both men and women is closely related to the number of cigarettes smoked; these symptoms usually abate once a person stops smoking. Recurrent episodes of respiratory infection, associated with this excess secretion of mucus, are more frequent in cigarette smokers than in nonsmokers. Retrospective and prospective studies demonstrate that cigarette smoking is responsible for approximately 70% of chronic bronchitis and emphysema cases. Death rates from respiratory diseases are higher in smokers than in nonsmokers, accounting for about 25,000 deaths each year. When young patients stop smoking, pulmonary function may return to normal. Even in persons with moderately severe obstructive disease, stopping smoking may result in striking improvement in dyspnea and cough, with some improvement in ventilatory function. Coronary Heart Disease: The most important specific effect that smoking cigarettes has on health is the development of premature coronary heart diseast (CHD). Cigarette smokers have a significantly higher risk of CHD morbidity and mortality. Long-term epidemiologic studies of healthy populations confirm that a cigarette smoker is more likely to have a myocardial infarction and to die from CHD than a nonsmoker. Cigarette smoking is one of the major risk factors for CHD and acts in combination with elevated blood pressure, elevated serum cholesterol, and other risk factors.

Heart disease caused 648,540 deaths in the United States in 1975. Cigarette smoking is considered responsible for approximately 25% of these deaths. Stopping smoking and controlling other risk factors can reduce morbidity and mortality of CHD.
Other Cancer: In addition to developing lung cancer, cigarette smokers have a significantly higher rate of cancer of the larynx, pharynx, oral cavity, esophagus, pancreas, and urinary bladder. Pipe and cigar smokers have elevated risk of developing cancer of the oral cavity, pharynx, larynx, and esophagus when compared to nonsmokers.
Pregnancy: Mothers who smoke cigarettes during the second and third trimesters of pregnancy have been found to have babies with a lower average birth weight than babies of nonsmoking mothers. This effect is probably the result of higher levels of carboxyhemoglobin in the fetal circulation. An increase in perinatal mortality has been observed in babies born to smoking mothers, particularly when other factors which affect perinatal mortality exist. Stopping smoking is recommended during pregnancy.

Effects of Smoking - Continued

Reported by the National Clearinghouse for Smoking and Health, Bur of Health Education, CDC.
Editorial Note: The National Clearinghouse for Smoking and Health (NCSH), Bureau of Health Education, CDC, was recently named an official WHO Collaborating Agency for Smoking and Health. The NCSH can provide additional deEpidemiologic Notes and Reports
tails, upon request, on the health consequences of smoking; it will also supply materials designed to help those who wish to stop smoking.

Reference

1. World Health Organization: Smoking and Its Effects on Health (WHO Tech Rep No. 568). Geneva, 1975, p 8

Fatal Malaria Due to Splenic Rupture - California

A 35 -year-old man returned to the United States from Thailand on February 23, 1976, with a 3 -day history of fever, chills, headache, myalgia, weakness, and anorexia. Ten days after the onset of his symptoms, he was admitted to a hospital in Los Angeles, California, where the diagnosis of malaria was made.

The patient had lived in Bangkok, Thailand, for the past 12 years, where he had had 3 previous episodes of malaria. He also gave a history of an exploratory laparotomy and splenectomy in the 1950s, following an auto accident.

An admission examination revealed a blood pressure of 100/60 and a pulse of 100 per minute without postural changes. The only abnormal physicial findings were a 30 centimeter midline surgical scar on the abdomen and a left upper quadrant fullness believed to be a prominent left lobe of the liver. Abnormal laboratory studies on admission included a hemoglobin of $10.6 \mathrm{gm} / 100 \mathrm{ml}$, a white cell count of $3,700 / \mathrm{mm}^{3}$, and a platelet count of $50,000 / \mathrm{mm}^{3}$. Further blood tests revealed a normal prothrombin time,
normal partial thromboplastin time, and normal thrombin time. A peripheral blood smear showed trophozoites and gametocytes of Plasmodium vivax.

The patient was immediately started on a course of oral chloroquine phosphate (2.5 gm of salt or 1.5 gm of base) over a 48 -hour period, and he rapidly became afebrile and asymptomatic. However, 4 days after admission he awoke with complaints of dizziness. While attempting to go to the bathroom, he fell and struck his head. The patient was found to have no detectable blood pressure. Approximately 8 minutes after the fall, he had a cardiopulmonary arrest; resuscitation efforts were unsuccessful. A limited autopsy showed a ruptured spleen weighing 1,600 grams, atypical in appearance, and 4 liters of blood in the peritoneal cavity.

Reported by A Underman, MD, G Savitch, MD, Los Angeles; S Fanning, MD, Los Angeles County Health Dept; and Parasitic Diseases Div, Bur of Epidemiology, CDC.
(Continued on page 151)
Table I. Summary-Cases of Specified Notifiable Diseases: United States

DISEASE	17th WEEK ENDING		$\begin{aligned} & \text { MEDIAN } \\ & \text { 1972-1976 } \end{aligned}$	CUMULATIVE, FIRST 17 WEEKS		
	$\begin{gathered} \text { April 30, } \\ 1977 \end{gathered}$	$\begin{gathered} \text { May } 1 . \\ 1976 \end{gathered}$		April 30, 1977	$\begin{gathered} \text { May } 1, \\ 1976 \end{gathered}$	$\begin{aligned} & \text { ME DIAN } \\ & 1972-1976 \end{aligned}$
Aseptic meningitis	49	24	34	595	584	584
Brucellosis	5	3	6	54	73	43
Chickenpox	6.469	6,142	-	103,992	97,089	--
Diphtheria	6	1	5	32	95	89
Encephalitis \quad Primary	11	16	18	191	252	272
Encephatitis iPost-Infectious	8	7	7	52	90	89
(Type B	319	228	177	5,169	4.639	3.136
Hepatitis, Viral Type A	554	772	898	10.741	11.741	14,493
IType unspecified	160	160	8	3,062	2,883	
Malaria	9	9	4	111	107	86
Measles (tubeola)	2,295	1,401	1,200	27,360	17,893	14.325
Meningococcal infections, total	37	39	30	744	663	579
Civilian	37	39	30	739	658	563
Military	-	-	-	5	5	16
Mumps	528	1,237	1,909	9,874	21.420	27,843
Pertussis	10	10	-	213	+ 333	
Rubella (German measles)	898	434	724	10.511	6.205	7.348
Tetanus	-	-	-	13	11	20
Tuberculosis	685	699		9,622	10.558	-
Tularemia	3	2	2	25	33	31
Typhoid fever	9	5	5	118	106	104
Typhus, tich-borne (Rky. Mt. spotted fever)	13	7	4	45	30	21
Venereal Diseases:						
Gonorrhea $\begin{aligned} & \text { Civilian } \\ & \text { Military }\end{aligned}$	16.707 346	$18,598$	---	$\begin{array}{r} 299.401 \\ 3.595 \end{array}$	$314,238$	---
Syphilis, primary and secondary / Civilian	346 351	661 394	---	3.595 7.016	$\begin{aligned} & 9,579 \\ & 8,413 \end{aligned}$	---
Syphis, primary and secondary (Military	4	5	---	101	. 125	---
Rabies in animals	82	86	86	843	820	965

Table II. Notifiable Diseases of Low Frequency: United States

	CUM.		CUM.
Anthrax:	-	Poliomyelitis, total:	2
Botulism: *Ohio 1	66	Paralytic:	2
Conganital rubella syndrome:Calif. 1	3	Psittacosis: *Calif. 4	22
Leprosy: NYC 1, Tex. 1.	37	Rabies in man:	-
Leptospirosis:	13	Trichinosis:*	34
Plague:	1	Typhus, murine:	15

[^0]Table III
Cases of Specified Notifiable Diseases: United States
Weeks Ending April 30, 1976 and May 1, 1977-17th Week

AREA REPORTING	ASEPTIC MENINGITIS	BRUCEL. LOSIS	CHICKENPOX	DIPHTHERIA		ENCEPHALITIS			HEPATITIS, VIRAL			MALARIA	
						Primary: Arthropod. horne and Unspecifiad		Post Infectious	Type 8	Type A	Түре Unspecified		
	1977	1977	1877	1977	$\begin{aligned} & \text { CUM. } \\ & 1977 \end{aligned}$	1977	1976	1977	1977	1977	1977	1877	$\underset{\substack{\text { CUM. }}}{ }$

UNITED STAT
NEW ENGLAND

Guam*
Puerto Rico
Virgin Islands

NA	-	$N A$	-	-	-	$N A$	$N A$	$N A$
$N A$	-	$N A$	-	-	-	$N A$	$N A$	$N A$

-

NN: Not notifiable
 NA: Not available

"Delayed reports: Asep. meng.: Ala. add 2, Okla. add 8 (1976), Guam add 1 (1977); Chickenpox: Ala. delete 73 (1976), N.Mex. add 2, Calif. add 55. Guam add 5 (1977); Enceph.: Wisc. add 2, Ky. delate 1 (1977); Hep. B: Ala. delete 8, Okla. delete 2, Wyo. delete 2, Ariz. delete 20 (1976). Tex. delete 1, Guam add 2 (1977): Hep. A: Ala. delete 4, Okla. add 2, Wyo. add 6, Ariz. add 32 (1976), N. Dak. add 1 Ark. add 8, Ida. delete 2, N.Mex. add 2, Nev. add 1. Guam add 3 (1977); Hep. unsp.: Ala. add 2, Okla. add 4, Wyo. delete 5. Ariz. delete 16 (1976) Ark. add 2, Tex. delete 2, Mant. delete 1, N.Mex. add 1, Guam add 4 (1977); Malaria: Mo. delete 1 (1977)

Table III-Continued
Cases of Specified Notifiable Diseases: United States
Weeks Ending April 30, 1976 and May 1, 1977 - 17th Week

[^1]*Delayed reports: TB: Ala, add 4 (1976), Wisc. add 8. N.Car, delete 1, Ky. delete 1, Guam add 2 (1877); RMSF: Okla. delete 5 (1876); GC: Ind. delete 511 , Calif. delete 1302 (1976), S. Dak. delete 1, Ala. add 106, La. delete 14, Guam add 3 (1977); Syphilis: Ind. delete 5, Calif. delete 87 (1976), Wisc. delete 2, Ark. add 1, La. delete 6 (1977); An. rabies: Wisc. add 3 (1877)

Week-Ending April 30, 1977 - 17th Week

REPORTING AREA	ALL CAUSES					Pneu•maniaandInfluenzaALLAGES	REPORTING AREA	All Causes					
	$\underset{\text { AGES }}{\text { ALL }}$	65 Yaars and $\mathbf{O v a r}$	$\begin{gathered} \text { 45-64 } \\ \text { Years } \end{gathered}$	$\begin{gathered} 25.44 \\ \text { Years } \end{gathered}$	Under 1 Year			$\begin{gathered} \text { ALL } \\ \text { AGE } \end{gathered}$	65 Years and Over	$\begin{gathered} \text { 45-64 } \\ \text { Years } \end{gathered}$	$\begin{gathered} 25-44 \\ \text { Years } \end{gathered}$	Under 1 Year	
NEW ENGLAND Boston, Mass. Bridgeport, Conn. Cambridge. Mass. Fall River, Mass. Hartiord, Conn. Lowell, Mass. Lynn, Mass. New Bedford, Mass. New Haven, Conn. Pravidence, R.I. Somerville, Mass. Springfield, Mass. Waterbury, Conn. Worcester, Mass.	659	441	152	27	21	34	SOUTH ATLANTIC	1,157	670	323	76	50	41
	214	133	51	13	9	14	Atlanta, Ga.	148	75	41	15	8	6
	32	24	6	-	1	1	Baltimore, Md.	248	148	71	15	7	7
	22	14	6	1	-	2	Charlotte, N. C.	50	37	6	6	-	2
	31	25	5	1	-	1	Jacksonville, Fia.	75	49	17	2	5	3
	67	45	15	1	2	2	Miami, Fla.	88	42	32	6	1	
	28	19	8	1	-	2	Norfolk, Va.	62	36	20	3	3	2
	22	17	4	1	-	-	Richmond, Va.	67	31	21	2	11	4
	18	13	4	1	$\overline{-}$	-	Savannah, Ga.	43	18	16	5	2	5
	46	29	8	3	5	-	St. Petershurg, Fla.	75	55	14	2	4	4
	59	33	20	3	3	3	Tampa, fla.	72	49	15	2	4	4
	9	4	5	-	-	-	Washington, D. C. . .	197	111	61	16	3	4
	31	21	9	1	-	3	Wilmingtan, Del.	32	19	9	2	2	-
	28	21	5	1	-	5							
	52	43	7	-	1	1							
							EAST SOUTH CENTRAL	685	409	172	47	21	28
							Birmingham. Ala. . . .	125	69	36	7	6	5
MIDDLE ATLANTIC	2,779	1,745	687	171	134	137	Chattanooga, Tenn. . . .	68	40	13	8	-	5
Albany, N. Y.	42	29	5	1	4	1	Kıoxville, Tenп.	32	17	13	1	-	1
Allentown, Pa.	23	13	9	-	1	3	Louisville, Ky.	131	82	28	4	8	6
Bufíalo, N. Y.	115	81	26	5	2	11	Memphis, Tenn.	150	94	32	14	3	6
Camden, N. J.	36	16	14	-	4	1	Mobile, Ala.	51	28	17	2	1	-
Elizabeth, N. J.	25	14	11	-	-	1	Montgomery, Ala.	24	17	5	1	1	1
Erie, Pa.	25	15	9	1	-	1	Nashville, Tenn.	104	62	28	10	2	4
Jersey City, N. J.	40	25	10	5	-	5							
Newark, N. J. .	51	20	16	4	5	5							
New Yark City. N. Y.	1,430	902	344	102	42	52	WEST SOUTH CENTRAL	1.395	709	411	125	84	40
Paterson, N. J.	33	18	11	2	2	2	Austin, Tex.	47	29	9	7	-	6
Philadelphia, Pa.	395	237	102	26	23	25	Baton Rouge, La. . . .	49	21	17	7	3	2
Pittshurgh, Pa.	192	122	46	10	10	14	Corpus Christi, Tex. . .	39	23	12	1	-	5
Reading, Pa.	39	24	12	2	-	1	Dallas, Tex.	167	80	56	12	12	2
Rochester, N. Y.	116	76	20	7	8	8	El Paso, Tex.	47	27	7	4	5	1
Schenectady, N.	22	15	6	-	-	-	Fort Worth, Tex. ...	87	44	19	10	5	-
Scranton, Pa.	45	32	12	$\overline{5}$	-	3	Houston, Tex.	424	190	137	47	22	4
Syracuse, N. Y.	67	49	11	5	2	3	Little Rock, Ark.	77	38	21	7	8	5
Trenton, N. J.	25	16	7	1	1	1	New Orleans, La.	121	69	33	9	9	
Utica, N. Y.	28	24	4	-	-	2	San Antonio, Tex. ...	167	89	51	13	10	2
Yonkers, N. Y.	30	17	12	-	-	3	Shrevepart, La. Tulsa, Okla.	$\begin{array}{r} 70 \\ 100 \end{array}$	42 57	$\begin{aligned} & 17 \\ & 32 \end{aligned}$	4	7 3	3 10
EAST NORTH CENTRAL													
	2,243 46	1.318 39	596 4	144	101	61	MOUNTAIN .	495	304	115	28	24	14
Canton, Ohio	38	24	8	1	1	3	Albuquerque, N. Mex. .	44	19	15	3	3	-
Chicago, III.	540	291	162	41	25	13	Colorado Springs. Colo.	43	27	7	3	4	2
Cincinnati, Ohia	145	88	37	7	7	3	Denver, Colo.	99	57	28	5	5	2
Cleveland, Ohio	190	105	56	14	7	6	Las Vegas, Nev.	20	9	6	3	-	3
Columbus, Ohio	142	74	40	10	10	3	Ogden, Utah	12	8	3	-	1	
Dayton, Ohio	108	60	37	5	3	2	Phaenix, Ariz.	133	89	27	9	3	2
Detroit, Mich.	308	177	83	23	13	9	Pueblo, Colo.	20	15	3	1	1	4
Evansville, Ind.	39	26	8	-	3	1	Salt Lake City, Utah	43	24	11	-	4	,
Fort Wayne. Ind. ...	41	21	8	6	3	4	Tucson, Ariz.	81	56	15	4	3	-
Gary, Ind.	18	8	3	4	1	2							
Grand Rapids, Mich.	54	39	7	4	4	-							
Indianapolis, Ind. ..	149	84	46	7	8	-	PACIFIC	1.529	934	386	113	44	45
Madison, Wis.	35	20	4	6	3	4	Berkeley, Calif.	11	9	1	-	1	1
Milwatkee, Wis.	118	77	35	1	3	2	Fresno, Calif. . . .	74	40	22	4	2	-
Peoria, III.	32	25	5	1	-	-	Glendale, Calif.	18	16	2	-		
Pockford, III.	30	22	6	1	-	-	Honolulu, Hawaii ...	59	136	15	4	4	2
South Bend, Inr.	37	32	2	1	1	4	Long Beach, Calif. ...	110	62	36	11	-	5
Toledo, Ohio	113	68	31	6	6	5	Los Angeles, Calif.	410	243	99	46	8	15
Youngstown, Ohio ..	60	38	14	4	2	-	Oakland, Calif.	77	47	13	8	6	-
							Pasadena, Calif.	33	23	5	-	2	1
							Portland, Oreg.	132	77	40	6	5	4
WEST NORTH CENTRAL	704	446	166	30	35	24	Sacramento, Calif. ...	61	38	15	4	1	3
Des Moines, lowa .	56	35	17	3	-	1	San Diego, Calif.	124	78	32	5	6	4
Duluth, Minn.	25	19	4	1	-	2	San Francisco, Calif. . .	144	90	32	13	4	2
Kansas City, Kans. ...	25	12	6	4	-	-	San Jose, Calif.	49	32	10	6	-	1
Kansas City, Mo. ...	114	77	25	6	2	2	Seattle, Wash.	153	91	47	4	4	3
Lincoln, Nebr.	27	20	4	2	1	1	Spokane, Wash.	47	31	12	2	-	3
Minneapolis, Minn. . .	94	57	20	2	8	3	Tacoma, Wash.	27	21	5	-	1	-
Omaha, Nebr.	80	36	14	3	3	-							
St. Louis, Mo.	142	97	27	1	14	4							
St. Paul, Minn.	71	43	23	3	1	1	tolal	11,646	6,976	3,008	761	484	424
Wichita, Kans.	90	50	26	5	6	10							
		1					Expected Number	11,604	7,082	3,007	730	371	441

-By place of occurrence and week of filing certificate. Excludes fetal deaths.

[^2]
Malaria - Continued

Editorial Note: Although serious complications and fatalities from malaria are most frequently associated with P. falciparum infections, this case illustrates the potentially serious morbidity of P. vivax infection. Splenomegaly occurs commonly in malaria (1), but rupture of the spleen occurs only rarely $(2,3)$. When rupture occurs, it usually follows an episode of acute P. vivax malaria. In such cases, trauma and coagulation abnormalities (particularly thrombocytopenia) may be contributing factors. Mortality is high in the absence of rapid diagnosis and surgical intervention.

In this instance splenomegaly and splenic rupture went unsuspected because of the patient's reported past history of splenectomy. Both trauma and thrombocytopenia appeared as possible contributing factors.

It is not possible to determine whether the patient's history was correct, in which case he had an accessory spleen. The latter are not rare; in one study they were found in 10% of 3,000 routine autopsies (4).

References

1. Heineman HS: The clinical syndrome of malaria in the U.S. Arch Intern Med 129:607-616, 1972
2. Howard WA, Krotoski W, SIonim M, Contacos P: Spontaneous splenic rupture in vivax malaria: Case report. Milit Med 138:32-35, 1973
3. Martelo OJ, Smoller M, Saladin T, Campbell F: Malaria in American soldiers. Arch Intern Med 123:383-387, 1969
4. Halpert B, Györkey F: Lesions observed in accessory spleens of 311 patients. Am J Clin Path 32:165-168, 1959
Measles - Ohio
Licking County, Ohio (population: 113,000), reported 411 cases of measles from October 1, 1976 to January 5, 1977. Of these, $31(7.5 \%)$ were reported by private physicians, 340 (82.7%) by schools, and $32(7.8 \%$) by both; 8 more $(2.0 \%$) were uncovered during an epidemiologic investigation of 3 affected schools.

The outbreak appeared to begin in a rural junior-senior high school in the northern part of the county. Eventually it involved 35 of the $57(61.4 \%)$ schools, with the greatest school measles attack rates approaching 10%. Peak incidence occurred during the week of November 19-25. Of the 411 cases, 57.5% were in persons 10 years of age or older (Table 1). Only 3.2\% of cases were reported in preschoolers.

TABLE 1. Age distribution of reported measles cases, Licking County, Ohio, October 1, 1976 - January 7, 1977.

Age Group	No. Cases	$\%$
$0-4$	13	3.2
$5-9$	113	27.5
$10-14$	155	37.8
$15-19$	77	18.8
$20+$	4	1.0
Unknown	49	11.9
		411

An intensive epidemiologic investigation of vaccine efficacy was conducted in 3 elementary schools that had a total of 85 reported cases -74 of which were clinically consistent with measles. Attack rates of clinically confirmed measles were 5.0% or higher in all of these schools. Vaccination status, including, if immunized, the exact age by month, was available on 70 of the 74 cases and on 443 of the 498 well children who were not immunized at the school clinics during the outbreak.

The highest measles attack rate (69.4%) occurred in unvaccinated children (Table 2). High attack rates were also seen in persons immunized before they were 12 months old. While the measles attack rate in persons immunized at TABLE 2. Measles attack rates by age at time of immunization for 70 cases of measles in 3 elementary schools, Licking Countr, Ohio.

Age at vaccination	III	Well	AR (\%)	Relative Risk
Unvaccinated	34	15	69.4	18.8
<11 Months	16	36	30.8	8.3
11 Months	4	12	25.0	6.8
12 Months	3	45	6.3	1.7
13 Months	1	24	4.0	1.1
>14 Months	12	311	3.7	1.0

[^3]12 months of age was higher than for those immunized at 14 months or later, the difference was not statistically significant. The highest risk of developing measles occurred in children who were either unimmunized or immunized prior to 12 months of age.

The lowest vaccine efficacy* rates occurred in persons immunized prior to 12 months of age. Children immunized when they were 13 or 14 months old had higher vaccine efficacy rates than did those immunized when they were 12 months of age; however, the differences were not statistically significant (Table 3).
TABLE 3. Vaccine efficacy by age at time of immunization, Licking County, Ohio.

Age	Vaccine Efficacy (\%)
<11 Months	55.6
11 Months	64.0
12 Months	90.9
13 Months	94.2
>14 Months	94.7

Measles control clinics were evaluated in 2 of the 3 schools, using immunization data from school records. Health authorities had recommended that all children who had not had measles or measles immunization or had been immunized prior to 12 months of age should be vaccinated in the control clinics. Record reviews revealed that, based on those recommendations, immunization had been necessary for only $46(20.3 \%)$ of the 227 children vaccinated. The study also found that 22 (32.4%) of the 68 school children who were unvaccinated or immunized prior to 12 months of age did not get immunized at their school clinics.
Reported by M Chaconas, Newark City Health Dept; F Benner, RN, MPH, Licking County Health Dept; H Butler, TJ Halpin, MD, MPH, State Epidemiologist, A Payton, S Sharp, K Sullivan, Ohio Dept of Health; Field Services Div, Bur of Epidemiology, and Immunization Div, Bur of State Services, CDC.
Editorial Note: Recent evidence, predominantly from antibody prevalence determinations, indicates that persons immunized at 12 months of age have lower seroconversion rates and measles antibody prevalence than those immunized a month or more later $(1,2,3)$. These findings prompted a change in 1976 in the recommended age for routine immunization from 12 months to 15 months (4). However, evaluation of clinical vaccine efficacy in outbreaks in persons immunized at 12 versus 15 months of age had not been performed at the time.

In this outbreak the number of persons, either ill or well,

[^4]Measles - Continued
immunized at 12 or 13 months of age is small. Thus, the failure to demonstrate significant differences in vaccine efficacy between these groups and persons immunized at 15 months of age or later may be due to the small sample size rather than the actual absence of such differences. However, the measured vaccine efficacies in these 3 schools suggest that the slightly higher failure rate in persons immunized at 12 months of age played little role.

This study supports the current ACIP recommendations that persons immunized at 12 months of age need not routinely be reimmunized. Further studies with larger numbers are necessary to evaluate fully this problem, however. This outbreak also confirms that vaccine efficacy in persons immunized prior to 12 months of age is low, thus supporting the current ACIP recommendations (4) to reimmunize such
persons. Finally, this study demonstrates that the reported proportion of vaccine failures may be a misleading index of vaccine effectiveness. At least 36 of the 74 (48.6\%) cases in this outbreak were documented vaccine failures; however, vaccine efficacy for those immunized at 12 months of age or later was 90% or higher.

References

1. Krugman S: Present status of measles and rubella immunization in the United States: A medical progress report. J Pediatr 90:1-12, 1977
2. Yeager AS, Davis JH, Ross LA: Measles immunization, successes and failures. JAMA 237:347-351, 1977
3. Shasby DM, Shope TC, Downs H, Herrmann KL, Polkowski J: Epidemic measles in a highly vaccinated population. N Engl J Med 296:585-589, 1977
4. MMWR 25:359-365, 1976

Follow-up on Legionnaires' Disease - Pennsylvania

Antimicrobial susceptibility of the agent of Legionnaires' disease has been evaluated by protection studies in embryonated hens' eggs and in vitro by agar dilution (MMWR 26 [12,14], 1977). This preliminary report by the Pennsylvania Department of Health examines the effectiveness of erythromycin in the only animal model of the disease.

Ten male Hartley strain guinea pigs, each weighing 600 grams, were given by intraperitoneal inoculation a lethal dose of a bacillus isolated from a confirmed Legionnaires' disease case. The isolate had previously been shown to be antigenically similar to reference strains of the Legionnaires' disease agent (MMWR 26 [12], 1977).

Inoculated animals became ill with fever and prostration usually within 24 hours of infection. At the first sign of fever in one group of ill animals, treatment was begun with erythromycin gluceptate in various doses (IlotycinR Gluceptate, USP, Dista Products Co., Div. of Eli Lilly \& Co.).* The drug was given intradermally once daily in dosages of $7.5 \mathrm{mg}, 15 \mathrm{mg}$, and 25 mg per animal per day for 7 days.
*Use of trade names is for identification only and does not constitute endorsement by the PHS, U.S. Dept. HEW.

Two animals received each of the 3 dosages. A group of 4 infected animals not treated with the drug served as positive controls.

The animals were monitored with daily rectal temperatures and clinical examinations. Every inoculated animal that did not receive erythromycin died within 96 hours of infection. All treated guinea pigs recovered and remained healthy 15 days after inoculation. Sera from convalescent animals were found to have antibody to the isolate in indirect fluorescent antibody tests.
Reported by P Nash, PhD, V Pidcoe, DrPH, K Schectman, L Sideman, Pennsylvania Dept of Health; Special Pathogens Br, Bacterial Diseases Div, Bur of Epidemiology, CDC.
Editorial Note: From 3 previous sources of information review of hospital charts of cases, in vitro determination of antimicrobial susceptibility, and protection studies employing embryonated hens' eggs - evidence had been accumulated that erythromycin might be an effective drug against the Legionnaires' disease bacillus. These in vivo experiments in which ill guinea pigs responded to therapy with erythromycin are consistent with the previous findings.

Current Trends

Influenza - United States

While Alaska has been reporting recent outbreaks of in-fluenza-like illness in isolated island populations in the Aleutians and the Bering Sea, and Oregon has reported an institutional outbreak beginning April 22, influenza activity is generally declining in the United States.

Isolates resembling A / T exas $/ 1 / 77$, identified at CDC, have
now been made from sporadic cases of influenza in Arizona and California. During the week ending April 22, New Jersey reported its first isolate of $A / V i c t o r i a / 3 / 75$ this year.
Reported by the State Epidemiologists from Alaska, Arizona, California, New Jersev, and Oregon, and the National Influenza Immunization Program, CDC.

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE PUBLIC HEALTH SERVICE / CENTER FOR DISEASE CONTROL ATLANTA, GEORGIA 30333
 Director Designate, Center for DIsease Control, william H. Foege, M.D. Director, Bureau of Epldemiology, Philip S. Brachman, M.D.
 EdItor, MIchael B. Gregg, M.D.
 Managing Editor, Anne D. Mather, M.A.
 Chlef, MMWR Statistical Activity, Dennis J. Bregman, M.S.

OFFICIAL BUSINESS
FIRST CLASS
Redistribution using indicia is illegal.

[^0]: "Delayed raports: Botulism: Okla. 2 (197日); Psittacosit: Okla. 1 (1976); Trichinosis: Okla. 1, Ariz. delete 1 (1976)

[^1]: NA:Not available

[^2]: The Morbidity and Mortality Weekly Report, circulation 65,000, is published by the Center for Disease Control, Atlanta, Georgia. The data in this report are provisional, based on weekly telegraphs to CDC by state health departments. The reporting weak concludes at close of business on Friday; compiled data on a national basis are offieially released to the public on the succeeding Friday.
 The editor walcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health olficials. Send reports to: Center for Diseave Control, Attn.: Editor, Morbidity and Mortality Weakly Report, Atlanta, Georgia 30333.

 Send mailing list additions, deletiuns, and address changes to: Center for Disease Control, Attn.: Distribution Services, GSO, 1-SB-36, Atlanta, Georgia 30333. When requasting changes be sure to give your former address, including zip code and mailing list code number, or send an old address label

[^3]: P<0.0001
 X^{2} due to linear trend

[^4]: *Vaccine efficacy = rate in unvaccinated - rate in vaccinated rate in unvaccinated

